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TECHNICAL MEMORANDUM X-64689

ACTUATOR PARTICIPATION IN A BENDING
MODE IDENTIFICATION SYSTEM

INTRODUCTION

To design filters for the body bending frequencies of a flexible body
vehicle, it is first necessary to determine the bending frequencies and their
influence on vehicle stability. An analytical derivation is made to get the
first approximation of the frequencies, then elaborate testing is conducted
to verify the derived information. The vehicle or stage is suspended in the
test tower by long cables arranged to permit free vibration (Fig. 1). To
obtain frequency response information, the vehicle is then vibrated by connect-
ing a large shaker to the aft part of the vehicle and sensing the motion of
the vehicle at various points.

A thrust vector control system is capable of generating the forces
necessary for shaking the vehicle. The bending mode frequencies can be
determined from the actuator piston position.

To control the angular position of the engine, a servosystem that will
attenuate the commands to the dynamic load in the vicinity of the load
resonant frequency must be used. The desired servo would filter out the load
resonant frequency and give the proper attenuation in the neighborhood of
that frequency. A block diagram of a system of this nature is shown in
Figure 2.

The transfer functions are as follows:

K G = 909
a 1 S2 2( 0.7)S 

(300)2 + 300 2 

K G = 2.49
v 2 So )

I



S2 2t + S +
_n n

s2 2( O. 416) S 
(7 270.37)2 + (7057) +

1
G4

+ 2- S +
\n n/

An amplitude ratio frequency response of the system with the notch
filter is shown in Figure 3. This system contains the dynamics of the load,
the driving amplifier, the actuator, the servovalve, and the necessary
dynamics to give the proper response.

In a multiengine control system, it is desirable from a hardware
viewpoint to design one servoloop that can be interchangeable from engine to
engine. Because of the tolerance used in manufacturing the stage structure,
the engine, and the actuators, it is difficult to predict exactly what the
resonant frequency of the load will be. It is desirable to have a system that
would track the resonant frequency of the load and adjust the servosystem
notch so that it would always be set at the proper frequency.

The closed-loop transfer function of the actuation system contains a
numerator term that is exactly equal to the denominator in the transfer
function of the load. The numerator term exist3 because the hydraulic fluid
is compressible and the degree of compression is a function of the load
acceleration, or force on the piston. The overall transfer function is a
product of the servoloop and the load transfer functions. The development
of this follows.

Since

p F
S = o
C 1+ F
c o

where

2



+ S +
22.64 +2 S + 1

n n
F

F~SS2 2(0.7)s3S 7 + 1) 3 2 + (0 S 2 2+ (0.416) S + 1
(300)7+ 300 (70.57) 2 (70.57)

G4 =

+ S + 1

n n 

~~~~~~p = ~22.64 + 2 S +

Pc "(S (3772 + [I 7)- +300] 2(0.416) +22.64 2 +
377 + 300l + 5 +i0 j(70-57) 70.57 J 2.

The parameters of the load can be changed at random to produce any
natural frequency, and the notch filter will always be at the proper frequency.

P oPc i + F ') 

22.64(. S2 2 ) [| 

0) [ S2 2(0.7) S ] [s+ 2(0.416) si S +64 (S2. +2 +
) °° ' [-" s+ (7 + 0 ] + 22. 64 +S +

A representation of the traveling notch is shown in Figures 4 and 5.
The natural frequency of the dynamic load was the only parameter varied.

To obtain tracking and the proper amount of attenuation for a dynamic
load, it is necessary for the actuator piston position (3 3) to be a function

of engine acceleration. This is how the transfer function PB // i is obtained.

The traveling notch and associated shaping networks are mechanical compo-
nents and are installed within the actuator body.

3



BENDING MODE IDENTIFICATION

It has been established that the actuator will produce a notch at the
resonant frequency of the load and that the notch will follow changes to the
resonant frequency. To evaluate the actuation system to see if it would also
produce a notch for loads that have more than one resonant frequency, the
lumped parameter model in Figure 6 was used. The following equations
must be solved simultaneously to obtain a load to the actuator.

F = K (f - t p)

0 = - Koh + (K l + K0 ) t p - Kl pi

0 = -K ip + (K2 + K1 + M1 S2 )21 - K2/20 p 2 3

2
o 2 -K2 + (K + K + M S) )2 - K 13

O = -K 3 pB2 + (K3 + M3 S
2 ) 3

A block diagram of these equations and the actuator dynamics is shown
in Figure 7.

A frequency response of this system A p/1 C is shown in Figure 8.

These frequencies and the lumped parameters were not intended to
simulate any particular vehicle bending frequencies. This simulation does
illustrate how an actuator can be used to shake a test vehicle and use the
actuator piston position to determine the bending frequencies. The piston
position potentiometer voltage can be of any magnitude necessary to achieve
desired resolution and sensitivity.

The same conventional sensors presently used on this type of test
may be used.

4



CABLE

GROUND

SHAKER

Figure 1. Vehicle and actuator test schematic.
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Figure 2. Actuator and load block diagram.
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/2.

F= A PA A

K1

Figure 6. Lumped parameter model.

P- -

Figure 7. Actuator and load dynamics.
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